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New Consistent Model for Ferrite Permeability
Tensor with Arbitrary Magnetization State
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Abstract— Partially magnetized ferrites play an important
role in a large class of microwave devices. For instance, when
the optimal design of circulators, which operate with ferrite in
the low magnetic field region, and other ferrite devices (phase
shifters, isolators etc.) are considered, permeability tensor is
required for arbitrary magnetization. The existing models do
not simultaneously provide all tensor components, and their
validity domain is limited. The proposed model provides integral
expressions for all permeability tensor components, which can
be treated numerically without difficulties. The physical nature
of the model enforces the causal aspect that is required when
numerical time-domain methods (such as finite-difference time
domain (FDTD), transmission-line matrix (TLM), time-domain
finite-element method (TDFEM), etc.) are used. Finally, the com-
parison with measurements or specific cases, which can be treated
by available models, demonstrates the validity of the proposed
approach.

I. INTRODUCTION

BECAUSE of the wide application of the partially magne-
tized materials in the microwave devices, the calculation

of the permeability tensor components is of great interest.
In the saturated state, all magnetic moments are aligned.
Consequently, the motion of the magnetization vector leads
to the Polder [8] tensor. For a partially magnetized state, the
situation is more difficult. This is due to the complexity of
the domain configuration (orientation, shape, volume, etc.),
the difficulty to evaluate the internal field in each domain, and
the interactions between them. The first theory, presented by
Rado [1], consists of performing a spatial average of responses
produced by all domains in the ferrite. For frequencies above
the gyroresonance frequency, Rado has developed a theory
which provides a good approximation for the extra-diagonal
term , but inaccurate values for the diagonal ones (

). Starting from a coaxial configuration of alternatively
magnetized parallel and antiparallel domains, Schl¨omann [2]
developed a theory based upon magnetostatic approximation,
which takes into account the interactions between domains
of opposite magnetization. In the completely demagnetized
state, an average of the three diagonal tensor components
yields an accurate value for the isotropic permeability. By
using experimental characterization cells, Green and Sandy [3]
have measured all the tensor components as a function of the
ferrite magnetization state. They deduced empirical forms of
the diagonal terms ( and ) compatible with Schl̈omann’s
formula in the completely demagnetized state. In their first
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paper, Igarashi and Naito [4] presented a formula for the
transverse diagonal term in a partially demagnetized state.
In a subsequent paper [5], they gave an expression for the
longitudinal diagonal term by using the same approach used
by Rado. Unfortunately experimental results must be used to
adjust certain parameters used in the model.

In all these approaches, the local permeability in each do-
main takes a Polder tensor form. In [1] and [2], the internal dc
field in each domain is approximated by the magnetocrystalline
anisotropy field , whatever the external dc applied field. In
[1] and [5], the spatial average is performed by considering
noninteracting domains. As a result, it is necessary to adjust
parameters involved in the local Polder tensor components to
compensate for these approximations.

The present theory is also based on average responses
of all randomly oriented domains. Unlike Rado [1], and
Igarashi and Naito’s [5] theories, this model takes into account
the interaction between adjacent domains by considering the
demagnetizing and the Polder–Smit effect [6], which may
occur between domains. Hence, this model does not require
adjustment of quantities such as internal static and dynamic
fields.

II. BASIC THEORY

Ferrites in a completely demagnetized state present an
internal structure divided into regions, which are, themselves,
divided into domains of parallel and antiparallel magnetiza-
tion, as shown in Fig. 1. The configuration of the regions
(direction, volume, etc.) depends upon the fabrication process
and the shape of the material. Whatever the configuration
complexity (quasi-random or well organized), the macroscopic
magnetization vanishes in the demagnetized state.

In the present model, each region is characterized by,
which is the angle between the direction of magnetization
and the Oz direction where the dc magnetic field is applied.
First, the response of each region will be established by taking
into account (in each domain) the evolution in both magnitude
and direction of the internal dc field, and interactions between
them. The spatial average of the responses of all regions is then
performed. Locally, the motion of the magnetization vector
in a domain is governed by Gilbert’s equation [7]

(1)

where is the internal dc magnetic field, is the internal
dynamic magnetic field, is the phenomenological loss term,
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Fig. 1. Example of internal structure of a ferrite in completely demagnetized
state.

is the gyromagnetic ratio , and is the saturation mag-
netization. To solve this equation, it is necessary to know
and in each domain.

III. EVALUATION OF THE DYNAMICAL MAGNETIC F IELD: .

The field arises from the RF magnetic field and the
demagnetizing field that depends on the shape of the domain.
The demagnetizing fields can be explained by the presence of
dipolar magnetic charges at the periphery of the domain. Under
certain conditions, dipolar charges of two adjacent domains
tend to add up and double the value of the demagnetizing
field. This phenomenon, which is known as the Polder–Smit
effect, couples magnetization vectors of adjacent domains. The
first step of the proposed approach is to introduce a directly
demagnetizing and Polder–Smit effect in the magnetization
vector motion equation (1). The above step can be expressed
mathematically by two coupled Gilbert’s equations relating
two adjacent domains:

(2)

where

magnetic moment of domain 1 (2);
( effective dc magnetic field in domain 1

(2);
RF magnetic field;
dynamic part of ;
demagnetizing coefficient depending on
the shape of the domains;
represents the dynamic demagnetizing
fields (including Polder–Smit effect) in
domain 1.

The demagnetizing fields, including a Polder–Smit effect,
are maximum when (case where the magne-
tizations of two adjacent domains are antiparallel). If the
material is saturated, , the internal demagnetizing
fields vanishes. In the later case, the demagnetizing dynamic
fields distribution depends on the macroscopic shape of the
material and, therefore, are included in Maxwell equations
and in continuity relations at the interfaces. The demagnetizing
coefficient depends on the shape of the domain (
for cylindrical shape and for spherical shape) and
will be discussed later. To solve (2), it is necessary to know
the effective dc magnetic field in two adjacent domains.

IV. EVALUATION OF THE LOCAL

EFFECTIVE DC MAGNETIC FIELD

The second step consists of evaluating the internal dc field in
each domain as a function of the ratio when an external
dc field is applied. Let be the unit vector that defines the
equilibrium direction of the local vector , which is also the
direction of the effective dc magnetic field

and (3)

is the internal dc field arising from the external applied dc
magnetic fields , the macroscopic demagnetizing fields

, the magnetocrystalline anisotropy field , and
the dipolar field (the exchange fields are neglected).
Hence, this is written as follows:

(4)

where

randomly oriented unit vector (all the directions are
equiprobables for the anisotropy field );
applied external dc magnetic field along the Oz
axis;
macroscopic demagnetizing coefficient along the
Oz axis depending on the shape of the sample;
macroscopic magnetization and macroscopic
demagnetizing field, which appears along Oz;
average magnetic field created by all magnetic
moments into the considered domain. Hence, it also
points along Oz;
total dc magnetic fields along Oz.

The vectors and are expressed in the Cartesian system
as

(5)

(6)

By substituting (5) and (6) into (4), one obtains shown in
(7) at the bottom of the following page. Therefore, according
to (5) the angles , , , are related by

(8)
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If and are assumed uniform in the whole sam-
ple, the quantity can be related to the ratio by
expressing the average of the projection on (Oz) as follows:

Thus, using (8), one obtains the following relations:

for

for
(9)

These relations show that the magnitude of the internal dc
field is of the same order of the anisotopy field up to
about .

A. Local Internal dc Fields in Adjacent Domains

If is the magnetocrystalline field in domain 1, is
the one in the adjoining domain 2. Thus, and

. Consequently, the magnetization and the magnetic field
in each domain is given by

(10)

with

(11)

and according to (7) and (8)

(12)

Fig. 2 illustrates the evolution of the dc internal fields in
adjacent domains for different regions in the ferrite material.
From a physical point of view, this model does not represent
the reality. Actually, one knows that the volume of the domain
increases or decreases depending on the orientation of its
magnetization vector with respect to the applied dc magnetic
field, before the rotation of the magnetization vector occurs.

Fig. 2. Calculation of the internal field in each domain.

V. SOLUTIONS OF THE COUPLED

GILBERT’S DIFFERENTIAL EQUATIONS

Since the internal field in each domain is known, one
can solve the coupled Gilbert’s differential equations (2). By
substituting (3) into (2), and using small signal approximation,
the coupled Gilbert’s equations become

(13)

First, (13) is solved in the local coordinate systems ( )
(see Appendix I). These equations are then decoupled before
writing them in the Cartesian coordinate system (see Appendix
II). Finally, performing a simple integration over (see
Appendix III), one obtains all components of the permeability
tensor shown in (14), at the bottom of the page. These
expressions are easily computed using (9), (12), and factors

( ), ( ), ( ), ( ), ( ), and ( ), whose analytical
expression is given in (AIII-8) (Appendix III).

VI. RESULTS

In this section, the present model is compared to other
theoretical approaches available in the literature [1]–[3] and
with the published measurements in [9]. The first compari-
son concerns the demagnetized state, for which Schlömann’s
formula is a good approximation. This case corresponds to

. Equation (14) then takes the following analytical

(7)

(14)
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Fig. 3. Real part of� of completely demagnetized ferrite as a function of
frequency (Ms = 159:15 kA/m). Comparison with Schlömann’s formula.

Fig. 4. Real part of� of partially magnetized ferrite as a function of
frequency (Ms = 159:15 kA/m). Comparison with Green and Sandy’s
formulas.

Fig. 5. Real part of parallel component of partially magnetized ferrite as a
function of frequency (Ms = 159:15 kA/m). Comparison with Green and
Sandy’s formulas.

form:

and

In Fig. 3, the isotropic permeability is compared to Schlö
mann’s formula for and . A good accordance
is observed within the validity limits of Schlömann’s theory.
The value , which corresponds to an averaging

Fig. 6. Real part of� as a function of frequency (Ms = 159:15 kA/m).
Comparison with Rado’s formula (partially magnetized ferrite).

Fig. 7. Real part of� as a function of frequency (Ms = 159:15 kA/m).
Comparison with Rado’s formula (partially magnetized ferrite).

Fig. 8. Real part of�z as a function ofM=Ms. Comparison with Green
and Sandy’s formulas and measurements.

spherical shape of domains, seems to better fit Schlömann’s
formula. Note that the present model is not limited to low
frequencies, for which losses are important.

Figs. 4 and 5 show an example of comparison with Green
and Sandy’s formulas for the diagonal elementsand .
These curves, established for , confirm a better
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Fig. 9. Real part of� as a function ofM=Ms. Comparison with Green and
Sandy’s formulas and measurements.

behavior for the value . In the low-frequency region
(Fig. 6), where Rado’s model assumptions are not verified,
there is a resonance phenomenon. In the region where Rado’s
theory is valid, the agreement is quite good (Fig. 7). As
noticed by several authors, the Polder–Smit effect does not
have significant influence on . This explains the weak
difference between the curve and .
Figs. 8 and 9 illustrate the good prediction provided by the
proposed model regarding diagonal elements when compared
with measurements published in [9]. This comparison is shown
for the optimum value of the demagnetizing factor .
Note that the analytical expressions in [4] are closer to
the experimental measured points. The reason is that this
expression was obtained from a curve fitting of these points.

To compare this model with the Polder tensor, it is necessary
to know the correspondence between and (Polder
tensor). Here, takes the value of the internal field
defined by (9). For example, with and

kA/m, the internal field is 290.58 kA/m. Figs. 10
and 11 show that for a given value of the damping term, the
present model provides lower amplitude for the real part of

and because it takes the dispersion of magnetocrystalline
anisotropy fields into account. The comparison is presented
over the small frequency range of the gyromagnetic resonance.
Out of this range the curves are exactly the same. On the other
hand, the imaginary parts, which are directly related to the
coefficient , are not modified significantly (see Fig. 12).

The last curves (Figs. 13 and 14) illustrate the behavior of
the diagonal term as a function of frequency for various
states of magnetization. For nonsaturated medium, losses are
important in the low-frequency region (low field losses) and
decrease with the ratio. When saturation is reached,
losses only appears at Larmor frequency ( ).

VII. CONCLUSION

Permeability tensor components are, for the first time,
derived from a self-consistent model. Hence, the causality
which is required for using time-domain electromagnetic (EM)

Fig. 10. Real part of� as a function of frequency (Ms = 159:15 kA/m).
Comparison with Polder tensor (saturated ferrite).

Fig. 11. Real part of� as a function of frequency (Ms = 159:15 kA/m
Comparison with Polder tensor (saturated ferrite).

Fig. 12. Imaginary part of� as a function of frequency (Ms = 159:15
kA/m). Comparison with Polder tensor (saturated ferrite).

methods is achieved. Furthermore, this model allows one to
describe the permeability tensor for arbitrary magnetization
state (demagnetized partially or totally magnetized). It is also
found that the model is in accordance with previous theories
within their validity limits and with measurements published in
the literature. In addition, the proposed model can be improved
by coupling it with a prediction model of the hysteresis curve.
Such a model [10] allows one to obtain behavior as



1190 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 45, NO. 8, AUGUST 1997

Fig. 13. Real part of� of ferrite as a function of frequency for different
M=Ms ratios.

Fig. 14. Imaginary part of� of ferrite as a function of frequency for different
M=Ms ratios.

Fig. 15. Local coordinate systems.

a function of the field applied . Consequently, coupled
models should be able to reproduce a second-order hysteresis
effect observed experimentally by Green and Sandy.

APPENDIX I

A. Local Coordinate Systems

See Fig. 15.

B. Relation Between Basis Vectors of the Coordinates Systems

(AI-1)

(AI-2)

C. Resolution of (13) in the Local Coordinate System

(AI-3)

According to (13), (AI-3), and using the vectorial relations
between the basis vectors of the two local coordinate systems,
one obtains an expression of the following three components
of the dynamic magnetization vector:

(AI-4)

with

(AI-5)

In (AI-4), and are the components of written in
the local coordinate system ().

APPENDIX II: DECOUPLING OF (AI-4)

A. Expression of the Components in the Two Local Systems

Expressing in the two local coordinate systems

and using (AI-4), one has

(AII-1)
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Letting
the following relations are obtained:

(AII-2)

(AII-3)

Now the problem is to eliminate all terms with subscript 2
to obtain and versus and . The first step
consists of including the expressions of and (AII-
3) into (AII-2). As a result, only two equations are obtained,
linking , , , , , . It is then necessary to
write and as a function of , , . Noticing that
the wavelength is several orders greater than the dimensions of
the domains, can be considered the same in two adjoining
domains. Thus

(AII-4)

Hence, the following equations are obtained:

(AII-5)

(AII-6)

Finally, by decoupling the previous equations, the magnetiza-
tion vector is related to the microwave magnetic field.
The result is

(AII-7)

with , , , , , , and shown
in (AII-8) at the bottom of the page. Note that the transverse
components of depend on the radial components ofdue
to the coupling between domains.

B. Relations Between and in the Cartesian System

Equation (AII-7) represents the motion of a magnetization
vector in domain 1 of the region, where the magnetocrystalline
field is defined by ( ). Before adding the contribution of all
domains, one should transform (AII-7) back to the Cartesian
coordinate system ( ) as follows:

(AII-9)

(AII-10)

(AII-8)

(AIII-1)
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According to (AII-7), (AII-9), and (AII-10), one writes

(AII-11)

(AII-12)

(AII-13)

Equations (AII-11)–(AII-13) represent the response of a do-
main in a region characterized by the angles (). To perform
the response of the material, it is now necessary to sum up all
the couples (, ).

APPENDIX III

A. Spatial Average of Responses

The effective magnetization vector is obtained by a spatial
average of the responses

where First, an integration is performed over,
which yields the average value

Terms depending on , , and vanish, while
the quadratic and constant terms after integration give
and . As a result, (AII-10)–(AII-12) reduces to (AIII-1),
shown at the bottom of the previous page. Then the average
components of the magnetization vector are computed as
follows:

(AIII-2)

The components of the permeability tensor are obtained from

(AIII-3)

One writes the elements of the tensor (13) according to (AIII-
1)–(AIII-3).
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